
Supplementary Materials of “NetGO: Improving

Large-scale Protein Function Prediction with

Massive Network Information”

Ronghu You1,2,3, Shuwei Yao1,2,3, Yi Xiong 4, Xiaodi Huang5, Fengzhu Sun2,3,6, Hiroshi

Mamitsuka7, Shanfeng Zhu1,2,3∗

1 School of Computer Science and Shanghai Key Lab of Intelligent Information Processing and

2 Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,

3 Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of

Education, China

4 Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University,

5 School of Computing and Mathematics, Charles Sturt University, Albury, NSW 2640, Australia,

6 Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,

7 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan

1 Background

The official result of CAFA3 was announced in the Function SIG meeting of ISMB2018 (Chicago, July

2018) 1, which used new experimentally annotated proteins between Feb 2017 and Nov 2017 as the test

data. From the announcements of the meetings, GOLabeler achieved the first place for no-knowledge

proteins out of around 150 submissions all over the world in terms of F-max in all three GO ontologies:

MFO, BPO, and CCO (CAFA3 assessor: N. Zhou). Specifically, GOLabeler had achieved 0.62 for MFO,

which was more than 14%, higher than other methods. On the other hand, GOLabeler achieved 0.40

and 0.61 for BPO and CCO, respectively. But the improvement over other methods is only slight. This

motivated us to develop NetGO. NetGO incorporates massive network information into GOLabeler so as

to improve the prediction performance in BPO and CCO.

2 Methods

NetGO consists of six component methods, Naive, BLAST-KNN, LR-InterPro, LR-3mer, LR-ProFET

and Net-KNN. The details of the top five component method have been presented in [1]. Here we give

the formula of Net-KNN.

1Corresponding author: zhusf@fudan.edu.cn
1https://www.biofunctionprediction.org/afp_programs/AFP-2018-program.pdf

1

https://www.biofunctionprediction.org/afp_programs/AFP-2018-program.pdf


MFO1

MFO2

Test Protein

Naïve

BLAST-KNN 

Step 1

Ranking Model

Step 2

Lambda MART

MFO1

MFO2

MFOk

Step 3

Ranked list

Initial list

Sequence
Information

Network
Information

MFO1

MFO2

Net-KNN 

MFO1

MFO2

LR-3mer

LR-
Interpro

LR-
ProFET

Extracting
Features

MFO1

MFO2

MFO1

MFO2

MFO1

MFO2

Figure 1: The workflow of a test process in NetGO.

2.1 Net-KNN

Given a test protein Pj and a protein network (from STRING in our experiments), Net-KNN computes

the score S(Gi, Pj) between Pj and GO term Gi, through the following equation:

S(Gi, Pj) =

∑
PVk∈PV I(Gi, PVk) ∗ ω(PVj , PVk)∑

PVk∈PV ω(PVj , PVk)
, (1)

where PVj is the node in the protein protein network corresponding to Pj by STRI or HOMO (see the

main text for the details).

Given that there are m networks PN (l) (l = 1, · · · ,m) over the same set of nodes, the aggregated

weight ω(PVj , PVk) can be computed in an ensemble way:

ω(PVi, PVj) = 1−
m∏
l=1

(1− ω(l)(PVi, PVj)) (2)

where again ω(l)(PVi, PVj) is the confidence of an association between PVi and PVj in PN (l), and

ω(PVi, PVj) = 0 if there are no direct edges between PVi and PVj .

The higher the weight of two proteins in all of the m individual networks is, the higher their aggregated

weight is.

2.2 The workflow of processing queries in NetGO

Fig. 1 illustrates the workflow of NetGO during testing.

Step 1: Generate candidates GO terms

Given a query protein, we run six component methods to produce the top-k GO terms from each

component and then merge them to form the candidate GO terms (we used k=30 in our experiments. ).

2



Table 1: #proteins of species that have at least ten proteins under each of three GO ontologies in the datasets of Training,

LTR1, LTR2, and Testing, respectively.

Species Training LTR1 LTR2 Testing

MFO BPO CCO MFO BPO CCO MFO BPO CCO MFO BPO CCO

HUMAN (Homo sapiens) 9,487 11,531 18,417 83 97 336 1,427 332 193 150 228 1,202

MOUSE (Mus musculus) 5,929 9,497 9,029 126 281 173 118 166 97 63 176 145

DROME (Drosophila melanogaster) 4,716 10,480 7,739 179 669 282 171 158 167 76 113 79

ARATH (Arabidopsis thaliana) 4,253 8,135 10,004 206 241 180 476 155 87 111 257 186

DANRE (Danio rerio) 2,308 9,104 1,694 77 529 38 55 68 40 73 645 41

RAT (Rattus norvegicus) 4,330 5,329 4,684 43 129 134 44 52 45 40 85 84

All species (not only the above) 48,453 81,869 78,186 805 2,060 1,340 2,531 1,089 745 662 1,758 1,852

Note that reducing k is to focus on the most relevant GO terms to the query protein and also reduce the

computational burden of the model.

Step 2: Generate features for ranking GO terms

We then generate features of the query protein by using the scores (of each of the candidate GO

terms) predicted by all six component methods. As such, a six-dimensional feature vector is formed for

each pair of a GO term and one query protein. All score values are between 0 and 1.

Step 3: Rank GO terms by learning to rank (LTR)

Finally, we use LTR to rank all candidate GO terms of each query protein. All proteins in the training

data and their candidate GO terms are used for training the LTR model. In this way, LTR integrates

multiple sequence- and network-based evidence of proteins.

3 Experimental settings

3.1 Network information in STRING

We have used six different types of protein protein networks in STRING database: 0:neighbourhood,

1:fusion, 2:co-occurrence, 3:coexpression, 4:experiment and 5:database. The neighbourhood network is

constructed by linking genes that occur very closely in genomes. The co-occurrence network is derived

from phylogenetic profile. The fusion network is constructed by considering fusion genes per species. The

co-expression network is derived from mRNA expression data. The experiment network is derived from

experimental data. The database network is derived from curated databases.

3.2 Benchmark Datasets

We separated test data from training data in the same time-series way as CAFA did. Also, we used the

same target species as CAFA3 in LTR1, LTR2 and Testing. Table 1 reports the number of proteins in

the above four datasets. Note that the inputs of GOLabeler are sequences only, while those of NetGO

include both sequence and network information.

3.3 Performance Evaluation Metrics

We used the three measures for performance evaluation: Fmax, Smin, and AUPR (Area Under the

Precision-Recall curve). As a standard evaluation metric in machine learning, AUPR punishes false

positive prediction. It is suitable for highly imbalanced data. Fmax is an official metric of CAFA with

the following definition.

Fmax = max
τ

{
2 · pr(τ) · rc(τ)

pr(τ) + rc(τ)

}
, (3)

where pr(τ) and rc(τ) are precision and recall, respectively, obtained at some cut-off value τ , defined

as follows, respectively:

3



pr(τ) =
1

h(τ)

h(τ)∑
j=1

∑
i 1(S(Gi, Pj) ≥ τ) · I(Gi, Pj)∑

i 1(S(Gi, Pj) ≥ τ)
. (4)

rc(τ) =
1

NT

NT∑
j=1

∑
i 1(S(Gi, Pj) ≥ τ) · I(Gi, Pj)∑

i I(Gi, Pj)
, (5)

The remaining uncertainty (ru), misinformation (mi), and the resulting minimum semantic distance

(Smin) are defined as:

ru(τ) =
1

ne

ne∑
i=1

∑
f

ic(f) · 1 (f /∈ Pi(τ) ∧ f ∈ Ti) (6)

mi(τ) =
1

ne

ne∑
i=1

∑
f

ic(f) · 1 (f ∈ Pi(τ) ∧ f /∈ Ti) (7)

Smin = min
τ

{√
ru(τ)2 +mi(τ)2

}
(8)

where ic(f) is the pre-calculated information content.

3.4 The setting of Component Methods and LTR

1. BLAST-KNN

We used blast ver. 2.3.0+ with default parameters for BLAST-KNN (), except that the number of

iterations was one, blastdb was from all proteins in D and the E-value cutoff was set to 0.001.

2. LR

LR classifiers were trained by using sklearn with default parameters. As such, regularization was

applied with regularization strength set as 1.0.

3. LTR

We used ’rank:pairwise’ as the objective loss function in xgboost. Also the maximum depth of trees

in MART (Multiple Additive Regression Trees) was set at 3, to avoid overfitting to the training

data.

3.5 The Selection of k

For training NetGO, we combined top k GO terms by each component method as the candidate GO

terms. For choosing a suitable k, we conducted 5-fold cross validation over LTR training set with k=10,

30, 50, 70. Table 2 reports the performance. We found that the best Fmax is achieved when k=30 . With

a large value of k, the performance will decrease slightly and it will take much more time to train the

ranking model. Considering all of these facts, we therefore set k=30 in NetGO.

Table 2: The performance of NetGO over LTR training by 5-fold cross validation with different settings of k.

k Fmax AUPR

MFO BPO CCO MFO BPO CCO

10 0.659 0.349 0.668 0.656 0.226 0.680

30 0.662 0.349 0.672 0.658 0.226 0.695

50 0.660 0.347 0.670 0.651 0.226 0.695

70 0.658 0.348 0.669 0.653 0.228 0.694

4



4 Experimental results

4.1 AUPR of Net-KNN using different types of networks

Table 3: The AUPR scores of Net-KNN as a result of using six different types of networks: from 0:neighbourhood to

5:database. “All (binary, cut-off=0.5 or 0.9)”: a combination (union) of all networks, where the weight of each network

edge (similarity) is transformed into a binary by using the cut-off value of 0.5 or 0.9; and“All”: a combination of all networks.

All species Eukaryote Prokaryote

MFO BPO CCO MFO BPO CCO MFO BPO CCO

0: neighbourhood 0.047 0.023 0.195 0.052 0.230 0.195 0.030 0.025* 0.197*

1: fusion 0.067 0.013 0.139 0.083 0.012 0.138 0.020 0.016 0.020

2: cooccurence 0.062 0.013 0.128 0.072 0.013 0.130 0.026 0.022 0.160

3: coexpression 0.111 0.073* 0.475 0.132 0.076* 0.478 0.027 0.022 0.124

4: experiment 0.101 0.066 0.504* 0.125 0.071 0.509* 0.033* 0.020 0.023

5: database 0.128* 0.048 0.366 0.150* 0.048 0.363 0.021 0.019 0.004

All (binary, cut-off=0.5) 0.119 0.053 0.481 0.143 0.056 0.482 0.028 0.015 0.134

All (binary, cut-off=0.9) 0.148 0.040 0.413 0.170 0.041 0.416 0.044 0.025 0.065

All 0.158 0.097 0.568 0.186 0.102 0.567 0.042 0.035 0.166

We examined AUPR of Net-KNN by using six different types of networks in STRING: 0:neighbour-

hood, 1:fusion, 2:co-occurrence, 3:coexpression, 4:experiment, and 5:database. Table 3 reports AUPR

obtained by using each individual network (the upper part) and by combining all of these networks (the

lower part). The best performance values are highlighted in boldface. “All” in the table means the

combination of all the networks, according to equation (2). In the upper part of the table, the highest

and second highest scores are marked with an asterisk and are displayed in italic, respectively.

We have three main findings:

1) The use of all networks (“All” or “All(binary, cut-off=0.9)” in Table 3) achieved the best perfor-

mance, except for CCO of prokaryotes.

2) Among the six networks, no one performed the best in more than three cases. This implies that

the role of each network is different from each other. For example, 0:neighbourhood and 2:cooccurrence

achieved the best and second for CCO of prokaryote, respectively. However, they are ranked as the

4th and 6th for CCO of eukaryote, respectively. This indicates that they are only useful for predicting

prokaryote proteins.

3) Among three settings of network combinations, keeping the association scores of network edge (“All”

in Table 3) achieved the best performance in all nine cases, except for MFO of Prokaryote. This implies

that the conversion of the association scores into binary by using a cut-off value will cause information

loss. So we use “All” as a component of NetGO.

4.2 Performance comparisons of NetGO with other competing methods with

the p−values

To validate the performance of NetGO and other competing methods, we resampled the instances in

testing with replacement 100 times (bootstrap with replacement) to make the experiment reliable. We

get 100 datasets that have the same number of proteins as the test set. Except for the performance

evaluation measures, we used the paired t-test to statistically evaluate the performance difference between

the best performance (in boldface in tables) and all others. The result was considered significant if p-

value was smaller than 0.05. As shown in Table 4, the best performance value is underlined if the value

5



Table 4: Performance comparisons of NetGO with other competing methods using 100 bootstrapped datasets with replace-

ment. We use a paired t-test to statistically evaluate the performance difference between the best method (in boldface in

tables) and all other methods.

Fmax AUPR

MFO BPO CCO MFO BPO CCO

Naive 0.318 0.255 0.604 0.170 0.116 0.611

3.29e-131 5.06e-123 2.92e-126 6.12e-129 3.75e-114 1.38e-128

BLAST-KNN 0.591 0.284 0.642 0.449 0.112 0.562

9.18e-85 8.33e-122 7.70e-87 1.84e-91 2.58e-132 1.17e-126

Net-KNN 0.346 0.306 0.642 0.159 0.096 0.566

3.55e-130 2.51e-84 3.32e-95 1.90e-133 5.51e-126 2.55e-121

DeepGO 0.381 0.243 0.569 0.241 0.092 0.536

3.93e-132 5.94e-130 4.25e-131 6.90e-127 3.50e-124 1.77e-131

GoFDR 0.543 0.272 0.571 0.334 0.065 0.328

7.11e-94 9.96e-114 1.95e-134 8.48e-113 6.92e-140 5.11e-172

GOLabeler 0.630 0.321 0.668 0.549 0.171 0.685

5.45e-09 5.95e-98 3.60e-60 2.79e-49 1.13e-100 1.74e-102

NetGO(LTR1) 0.630 0.339 0.669 0.546 0.191 0.698

1.37e-11 3.38e-37 7.71e-78 8.62e-55 3.65e-57 7.50e-127

NetGO(LTR1+2) 0.632 0.342 0.674 0.556 0.196 0.708

is statistically significant. In the lower part, we compared two variants of NetGO. NetGO(LTR1) used

LTR1 only to train the ranking model, while NetGO(LTR1+2) used both LTR1 and LTR2. We can see

that using both LTR1 and LTR2 achieved the best performance, which is consistent with the case in

GOLabeler [1]. To make full use of massive network information, we show the results of NetGO by using

both LTR1 and LTR2 that incorporates all 6 types of networks in STRING.

4.3 Performance comparisons over testing data in terms of Smin

Table 5 reports the performance of NetGO and its competing methods in terms of Smin.

Table 5: Performance comparisons over testing data in terms ofSmin

MFO BPO CCO

Naive 9.153 16.029 5.266

BLAST-KNN 6.519 16.069 4.990

Net-KNN 9.061 16.525 4.961

DeepGO 8.461 16.334 5.244

GoFDR 7.681 31.395 10.929

GOLabeler 6.219 15.582 4.769

NetGO 6.170 15.270 4.647

4.4 Precision-recall curves of NetGO with its competing methods over MFO

and CCO.

As shown in Figs 2 and 3, we present the Precision-recall curves of NetGO with its own components and

competing methods over MFO and CCO, respectively.

6



Figure 2: Precision-recall curves of NetGO with its own components and competing methods over MFO.

Figure 3: Precision-recall curves of NetGO with its own component and competing methods over CCO.

7



4.5 Running Time

The time cost for the NetGO web server depends on the number of input data points. Table 6 lists the

average running times of 10 randomly generated datasets for each protein in the testing set.

Table 6: Mean running time of NetGO web server for different number of input proteins

Protein num GOLabeler NetGO

1 204.72s 230.93s

100 914.85s 997.12s

200 1502.87s 1573.13s

400 2707.82s 3094.76s

1000 4879.79s 5538.76s

References

[1] You,R., Zhang,Z., Xiong,Y., Sun,F., Mamitsuka,H., and Zhu,S. (2018) GOLabeler: improving

sequence-based large-scale protein function prediction by learning to rank. Bioinformatics, 34(14),

2465–2473 [PubMed:29522145] [doi:10.1093/bioinformatics/bty130].

8

http://www.ncbi.nlm.nih.gov/pubmed/29522145
http://dx.doi.org/10.1093/bioinformatics/bty130

	Background
	Methods
	Net-KNN
	The workflow of processing queries in NetGO 

	Experimental settings
	Network information in STRING
	Benchmark Datasets
	Performance Evaluation Metrics
	The setting of Component Methods and LTR
	The Selection of k

	Experimental results
	AUPR of Net-KNN using different types of networks
	Performance comparisons of NetGO with other competing methods with the p-values
	Performance comparisons over testing data in terms of Smin
	Precision-recall curves of NetGO with its competing methods over MFO and CCO.
	Running Time


